< New market survey report >

FO-WLP and RDL dielectric material
Subjects and Focal points of survey

<Subjects of survey>

◆ FO-WLP (Fan-out Wafer Level Package):
 - Chip-First type, RDL-First type
 * But RDL-first type FO-WLP not using photolithography for semiconductor is not included.

◆ Dielectric material:
 - Liquid type, Film type
 - Photosensitive (positive/negative) and non-photosensitive

<Companies surveyed>

▼ FO-WLP assembler
 - ASE, SPIL, TSMC, Amkor, STATS ChipPAC, Nanium, J Devices, Infineon, Freescale, Toshiba, Fujitsu laboratories, Others

▼ Dielectric material supplier
Focal points of survey

▼ FO-WLP

1. Main driver of Market growth
 - By application IC: AP, BB/RF, PMIC, Substitute PKG of 2.5D IC,
 - By needs: miniaturized wiring, low-profile PKG, cost reduction...

2. Technical issues for cost reduction and market expansion
 - Shift from wafer based assembly to panel based assembly, and Enlargement of assembly work size
 - Technologies and issues to realize panel based assembly and multi-RDL

▼ Dielectric material

1. Market growth of dielectric material
 - By usage (Buffer coat, FC bump, RDL, Others)
 - By form (liquid and film) of RDL materials for FO-WLP

2. Technical demands of RDL dielectric materials for FO-WLP:
 - Required characteristics for FO-WLP and the assembly process
Table of contents -1-

Chapter 1 Executive Summary
1. Overall trend of FO-WLP market
 1.1 FO-WLP Market trend summarization
 1.2 Market size forecast of FO-WLP
 1.3 Major IC to use FO-WLP
2. Trends of FO-WLP adoption for AP
 2.1 Summary of trends of FO-WLP adoption for AP
 2.2 Market size forecast of FO-WLP for AP
 2.3 PKG technology comparison of Apple's A series, and the related firms
 2.4 Related market and cost comparison of FO-WLP and FC-CSP, used for AP
3. Trends of FO-WLP market by wafer/panel base
 3.1 Market trend by assembly work base and trend of introduction of panel based packaging
 3.2 Market size forecast of FO-WLP on quantity base
 3.3 Market size forecast of FO-WLP on value base
4. Technology roadmaps by major IC
 4.1 Application Processor
 4.2 Power Management IC
 4.3 Baseband IC/RF Transceiver
5. Market trends of Dielectric materials
 5.1 Summary of RDL dielectric materials for FO-WLP
 5.2 Market trends of total liquid dielectric materials
 5.3 Market size forecast of total liquid dielectric materials
 5.4 Market trends of Dielectric materials for RDL
 5.5 Market size forecast of RDL dielectric materials

Chapter 2 Trends of FO-WLP
1. Summary of FO-WLP
 1.1 Features and issues of WL-CSP
 1.2 Basic structure of FO-WLP
 1.3 Advantages of FO-WLP
 1.4 Assembly process of wafer reconstitution
 1.5 Basic issues of FO-WLP
2. Technical trends of FO-WLP by type
 2.1 Types of FO-WLP
 2.2 Process technology by types of FO-WLP
 2.3 Specifications of FO-WLP by type
3. Cost reduction and Enlargement/Miniaturization
 3.1 Methods of cost reduction
 3.2 Work size enlargement and coating technology
 3.3 Miniaturization
 3.4 Summary of assessment of FO-WLP by type
4. Trends of adoption of FO-WLP by application
 4.1 Adoption of FO-WLP type by application IC
 4.2 AP
 4.3 WL-CSP alternative use
 4.4 High frequency module use
 4.5 Demand for multichip and space-saving
5. Market entry status of major assemblers
 5.1 List of FO-WLP assemblers’ status by type
 5.2 List of FO-WLP assemblers’ status by assembly work size
 5.3 List of FO-WLP assemblers’ application
Table of contents -2-

6. Market trends
6.1 Current market size in detail
6.2 Production status of major assemblers
6.2.1 Total market
6.2.2 By application
6.2.3 By type of PKG
6.2.4 By number of RDL
6.3 Market size forecast (2014-2024)
6.3.1 By application
6.3.2 By type of PKG
6.3.3 By number of RDL
6.3.4 Market for PoP
6.4 Market size forecast by assembly base form (2014-2024)
6.4.1 By Application / on PKG unit base
6.4.2 By application / on wafer unit and panel area bases
6.4.3 By number of RDL / on PKG unit base
6.4.4 By number of RDL / on wafer unit and panel area bases

Chapter 3 Trends of redistribution dielectric materials

1. Type of photosensitivity and polymer of dielectric material
1.1 Summary of dielectric material
1.2 Comparison of positive tone/negative tone photosensitive and non-photosensitive
1.3 Comparison of characteristics by polymer
2. Required resin characteristics by usage
2.1 Required characteristics and resin adoption status by application
2.2 Required characteristics for FO-WLP

3. Status of manufacturers of dielectric material for RDL
3.1 Summarized list of market entry status
3.2 Status of major manufacturers by polymer
3.3 Status of major liquid manufacturers
3.4 Status of major manufacturers of film type
3.5 Status of major manufacturers of low temperature curable type
3.6 Status of major manufacturers by usage
4. Product characteristic of major RDL material manufacturers
4.1 Liquid type
4.2 Film type
5. Trends of RDL material market and the manufacturers
5.1 Current market size in detail
5.1.1 Total market
5.1.2 Market for buffer coat
5.1.3 Market for RDL
5.2 Major manufacturers’ sales status
5.2.1 Total market
5.2.2 Market for buffer coat
5.2.3 Market for RDL
5.2.4 RDL market for FO-WLP
5.3 Market size forecast (2014-2024)
5.3.1 Total liquid market
5.3.2 Liquid market for buffer coat
5.3.3 Liquid market for RDL
5.3.4 Total market for FO-WLP
5.3.5 Liquid market for FO-WLP
5.3.6 Film type market for FO-WLP

6. Market trends
6.1 Current market size in detail
6.2 Production status of major assemblers
6.2.1 Total market
6.2.2 By application
6.2.3 By type of PKG
6.2.4 By number of RDL
6.3 Market size forecast (2014-2024)
6.3.1 By application
6.3.2 By type of PKG
6.3.3 By number of RDL
6.3.4 Market for PoP
6.4 Market size forecast by assembly base form (2014-2024)
6.4.1 By Application / on PKG unit base
6.4.2 By application / on wafer unit and panel area bases
6.4.3 By number of RDL / on PKG unit base
6.4.4 By number of RDL / on wafer unit and panel area bases

Chapter 3 Trends of redistribution dielectric materials

1. Type of photosensitivity and polymer of dielectric material
1.1 Summary of dielectric material
1.2 Comparison of positive tone/negative tone photosensitive and non-photosensitive
1.3 Comparison of characteristics by polymer
2. Required resin characteristics by usage
2.1 Required characteristics and resin adoption status by application
2.2 Required characteristics for FO-WLP

3. Status of manufacturers of dielectric material for RDL
3.1 Summarized list of market entry status
3.2 Status of major manufacturers by polymer
3.3 Status of major liquid manufacturers
3.4 Status of major manufacturers of film type
3.5 Status of major manufacturers of low temperature curable type
3.6 Status of major manufacturers by usage
4. Product characteristic of major RDL material manufacturers
4.1 Liquid type
4.2 Film type
5. Trends of RDL material market and the manufacturers
5.1 Current market size in detail
5.1.1 Total market
5.1.2 Market for buffer coat
5.1.3 Market for RDL
5.2 Major manufacturers’ sales status
5.2.1 Total market
5.2.2 Market for buffer coat
5.2.3 Market for RDL
5.2.4 RDL market for FO-WLP
5.3 Market size forecast (2014-2024)
5.3.1 Total liquid market
5.3.2 Liquid market for buffer coat
5.3.3 Liquid market for RDL
5.3.4 Total market for FO-WLP
5.3.5 Liquid market for FO-WLP
5.3.6 Film type market for FO-WLP
Samples of contents (from Chapter 2)

<table>
<thead>
<tr>
<th>Types of FO-WLP and the comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulated base</td>
</tr>
<tr>
<td>Process type</td>
</tr>
<tr>
<td>Wafer/Panel</td>
</tr>
<tr>
<td>Work size (at present)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure of TSMC's InFO-WLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
</tr>
<tr>
<td>Encapsulant</td>
</tr>
<tr>
<td>Redistribution layer</td>
</tr>
</tbody>
</table>

| Technical comparison for the increase of IO number in WL-CSP |
< Encap. base type > < PCB tech. type >< RDL-First type >

<table>
<thead>
<tr>
<th>List of FO-WLP assemblers' status by type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Amkor Technology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ASE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market size forecast of FO-WLP by application and assembly work base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of FO-WLP</td>
</tr>
<tr>
<td>BB/RF for Mobile</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market size forecast of the assembled FO-WLP on wafer base</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K wafer)</td>
</tr>
<tr>
<td>STATS ChipPAC</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production status of FO-WLP assemblers by # of RDL in 2014 (in volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of RDL layer</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>STATS ChipPAC</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Total (K pieces)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC type and the combination of ICs</th>
<th>The present PKG type</th>
<th>Encaps. base</th>
<th>RDL-First</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP for Smartphone</td>
<td>PoP, FC-CSP</td>
<td>Wafer</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2.5D (+3D) PKG</td>
<td>Panel</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>FC-CSP, FO-WLP</td>
<td>✓</td>
<td>P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adoption possibility of FO-WLP type by application IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC type and the combination of ICs</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>AP for Smartphone</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Samples of contents (from Chapter 3)

[Types and usage of dielectric materials]

<table>
<thead>
<tr>
<th>Type of dielectric material</th>
<th>Polymeric material</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosensitive (Positive/Negative), Non-photosensitive</td>
<td>Polyimide (PI), Polybenzoxazole (PBO), Benzocyclobutene (BCB), Phenol, Epoxy, Others</td>
<td>Stress buffer coat, Passivation for bump, Interlayer dielectrics, Adhesive</td>
</tr>
</tbody>
</table>

[General status of manufacturers of dielectric material for semiconductor coat by type]

<table>
<thead>
<tr>
<th>Form of material</th>
<th>Photosensitive/Non-photo</th>
<th>Polymeric type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Posi</td>
<td>Nega</td>
</tr>
<tr>
<td>Film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Ajinomoto Fine-Techno]

<table>
<thead>
<tr>
<th>Dow Chemical</th>
</tr>
</thead>
</table>

[Sales status of dielectric material manufacturers by use]

<table>
<thead>
<tr>
<th>Volume (kg)</th>
<th>Buffer C.</th>
<th>FC bump</th>
<th>RDL</th>
</tr>
</thead>
</table>

[Market share of dielectric materials by type of polymer]

<table>
<thead>
<tr>
<th>Chemical resistance</th>
<th>Amount by type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
</tr>
<tr>
<td>PBO</td>
<td></td>
</tr>
</tbody>
</table>

[Comparison of Spin-less coating methods]

<table>
<thead>
<tr>
<th>Slit coater</th>
<th>Spray coater</th>
<th>Ink-jet coater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating speed</td>
<td>~ 200mm/s</td>
<td>40mm/s</td>
</tr>
<tr>
<td>Film thickness uniformity*</td>
<td>±3 ~ 5%</td>
<td>±5%</td>
</tr>
<tr>
<td>Material utilization ratio</td>
<td>approximately %</td>
<td>approximately %</td>
</tr>
</tbody>
</table>

[Market size forecast of RDL dielectric materials for FO-WLP by form of material]

<table>
<thead>
<tr>
<th>Year</th>
<th>Liquid (Volume (t))</th>
<th>Average (USD/kg)</th>
<th>Film (Volume (m³))</th>
<th>Average (USD/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Required characteristics of RDL dielectric material for FI-WLP]

<table>
<thead>
<tr>
<th>WL-CSP</th>
<th>FO-WLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of layers of RDL dielectric material</td>
<td>1 ~ 2-Layer</td>
</tr>
<tr>
<td>Thickness of a dielectric</td>
<td>Approximately 5µm</td>
</tr>
<tr>
<td>As buffer coat layer</td>
<td>abcd</td>
</tr>
<tr>
<td>As cover coat layer</td>
<td>abc</td>
</tr>
</tbody>
</table>

[Market size forecast of liquid dielectric materials by usage]

<table>
<thead>
<tr>
<th>Form of material</th>
<th>Volume (t)</th>
<th>Average (USD/kg)</th>
<th>Film (Volume (m³))</th>
<th>Average (USD/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Market ratio of dielectric materials by type of polymer]

<table>
<thead>
<tr>
<th>Chemical resistance</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>0.2%</td>
</tr>
<tr>
<td>Sumitomo B.</td>
<td>14.0%</td>
</tr>
</tbody>
</table>

[Market share of buffer coat dielectric materials for memory IC]
About the report and how to order

Published: February 2016
Format: A4 size, 166 pages
Price: 580,000 JPY
Product: a bound book & a CD (PDF files)

How to purchase

You have two choices to purchase our report.

In case of payment by credit card, after having filled in a necessary item including your card information, please send the application of the next page by FAX for security of your information.

In case of payment by wire transfer, after your receiving our email of the application confirmation, please remit the payment to the following bank account.

Bank: MIZUHO BANK (Swift code: MHCBJPJT)
Branch: Kobunacho Branch (Phone: 81-3-3661-3111)
Branch code: 105
Branch Address: 8-1, Nihonbashi-kobunacho Chuo City, Tokyo 103-0024 JAPAN
Account No. 1653912
Account Name: Japan Marketing Survey Co., Ltd.
Application Form

Date: ______________________

To; Japan Marketing Survey Co. Ltd. (Fax:+81-3-5641-0528)

Market report: FO-WLP and RDL dielectric material

Corporate Name: ________________________________

Applicant’s name: ________________________________ Title: ________________________________

Section: ___

Address: ___

TEL: ________________________________ Email (or FAX): ________________________________

Select the payment method: □ By Credit Card, □ By Wire Transfer * check mark

<Card Information>

Card Type: ________________________________ Card number: ________________________________

Exp. Date: ________________________________ Name on the Card: ________________________________

NDA: Accepting the conditions below, please put the corporate name and the applicant’s signature in the blanks below.

_______________________________ promises not to release the contents of the report(s) above to a third party without obtaining written consent from Japan Marketing Survey Co., Ltd. Signature: ________________________________

Comments:

__